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Abstract Currently, multi-rotor UAV’s navigation mainly depends on satellite
navigation systems. In many environments (e.g., indoor, urban, or canyon), lack of
satellite signal will lead UAV navigation to failure. In that case, one backup
solution is to use the inertial navigation method. Inertial navigation method inte-
grates measurements from gyroscope and accelerometer to obtain the orientation,
speed, and position. Due to the instability of sensor bias, a slight orientation error
caused by gyroscopic bias change will lead to enormous position error. Noting that
there is a strong correlation between the pose and velocity for a flying multi-rotor
UAV, we can search for a solution to calculate velocity directly from UAV’s pose.
In this work, we propose to use support vector machine (SVM)-based machine
learning technique to predict the moving speed of the aircraft. This approach builds
a relationship directly between the orientation data and velocity by training. The
experiment has two stages. In early stage, we have tested our method in simulation
environment; then at later stage, we have tested our method in real-world cases.
Experimental results our method can predict the UAV’s velocity within the error of
0.3 m/s and the squared correlation coefficient between the predicted velocity and
the ground truth is about 0.8. The method can be used as a complementary navi-
gation source to achieve higher localization accuracy and stability.
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1 Introduction

Existing multi-rotor UAV’s navigation mainly depends on satellite navigation
systems, such as GPS, to obtain the position information. But in many scenes, there
may be a satellite signal failure, such as around tall buildings, in a deep canyon, and
indoor space. Because of loss of satellite signal, GNSS receiver cannot provide the
position of UAV, which in consequence cause autonomous navigation to fail.

The classic way remedy of this issue is to use inertial navigation as a backup. An
inertial navigation system, INS, consists of gyroscope and accelerometer, which
measure the linear acceleration and angular velocity of UAV. The instantaneous
velocity and altitude are obtained by integration operation [1]. However, the
measurement errors of inertial sensors can be amplified by integration and accu-
mulated over time, and finally lead to a significant error in a short time [2].

Another solution to lack of GNSS signals is to use optical flow sensor [3]. There
are many micro-UAVs equipped with optical flow sensors that are used to achieve
like obstacle avoidance [4], automatic landing [5], and stable hovering [6].
However, optical flow is influenced by the surface texture and illumination con-
ditions, especially for indoor navigation in the night. Productions from the most
advanced UAV companies such as Parrot and DJI have no good solution to the
problem of optical flow.

Notice that the special dynamic model of the multi-rotor aircraft, we can build a
mathematical relationship between UAV’s flying velocity and its attitude and
acceleration. But in practice, it is very hard to calibrate all the parameters of
dynamic model. So we view this model as a black-box and adopt machine learning
technique to train the model, and finally accomplished use the trained parameters to
estimate the UAV’s velocity.

The proposed method relies on only the IMU readings, without using integration
that usually produces a large position error as a typical inertial navigation system
does. It also works in any light conditions, not limited only in the daytime, which
can be a complementary navigation approach when satellite signal losses and
optical flow fails.

2 The Dynamic Model

In this paper, we consider only the altitude-hold control mode that exists in most
multi-rotor UAV platforms for clarity. Out method, however, is not limited to this
case, and can be also adopted in other modes.

Let Af g denote a right-hand inertial frame with unit vectors along the axes
denoted by fa1!, a2

�!, a3
�!g; Let fBg be a right-hand body fixed frame for the air-

frame with unit vectors fb1!; b2
!
; b3
!g. According to Newton’s law, we have
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m _v ¼ mga3
!þRFB ð1:1Þ

where FB combines the principle non-conservative forces applied to the quadrotor’s
body frame; R is rotation matrix from body frame fBg to inertial frame {A}
transform,

R ¼
cwch� s/swsh �c/sw cwshþ chs/sw
chswþ cws/sh c/cw swsh� cwchs/

�c/sh s/ c/ch

2
4

3
5 ð2Þ

where /; h;w are the roll, pitch, yaw angle respectively; c and s are abbreviations
for cosine and sine.

FB consists of propeller lift force and induced drag force which can be modeled
by

FB ¼ �TRb3
!� TRDvB ð3Þ

where TR; vB are the propeller lift force and velocity in body frame {B}; D 2 R3�3 is
the coefficient matrix [7] for induced drag.

The reading of accelerometer and the acceleration in inertial frame has the
following relationship

RaIMU þ ga3
!¼ _v , aIMU ¼ RT _v� ga3

!� �
: ð4Þ

By formula (1) and (4) we can write

maIMU ¼ FB: ð5Þ

Recalling (3) we get

aIMU ¼ � TR
m

b3
!� TR

m
DRTv: ð6Þ

Then we gain the velocity which is expresses as

v ¼ � DRT� ��1 m
TR

aIMU þ b3
!� �

: ð7Þ

When in attitude-hold mode, the vertical direction is in a state of force balance as
Eq. (8) expresses.

Pv TRRb3
!� �

¼ mg ) m
TR

¼ PvRb3
!

g
ð8Þ
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where Ph and Pv are defined as the projection matrix onto the x-y plane and
z direction.

Ph ¼ 1 0 0
0 1 0

	 

; Pv ¼ 0 0 1½ �: ð9Þ

Substituting m
TR

in (7) using Eq. (8), finally we obtain the horizontal translational
velocity

vh ¼ �Ph DRT� ��1 PvRb3
!

g
aIMU þ b3

!
 !

ð10Þ

where vh ¼ ðvx; vyÞ is the horizontal velocity in inertial frame {A}.
Equation (10) tells us that if we get an accurate attitude estimation of R and

acceleration estimation of aIMU, the velocity in altitude-hold mode can be theo-
retically solved without GPS or optical flow. But in practice, parameters in (10) are
very hard to be obtained. In this paper, we view dynamic model (10) as a black box,
and use machine learning method support vector machine (SVM) to train the model
(10). Finally, use the trained model to predict velocity of the flying UAV in
altitude-hold mode.

3 SVM Regression

The regression problem is to fit a straight line, a plane, or a super plane to
approximate the distribution of given sample points.

For given training dataset

T ¼ x1; y1ð Þ; . . .; ðxl; ylÞf g 2 Rn � Rð Þl ð11Þ

where xi 2 Rn; yi 2 R ¼ 1;�1f g; i ¼ 1; . . .; l, the regression problem is to find
function g(x) which can predict y very well at any input x. A linear regression
problem is to find linear function g xð Þ ¼ w � xð Þþ b that can fit the samples best.
Before detailed introduction of regression, we take a look at SVM linear
classification.

SVM linear classification is to deal with following optimization [8]:

min
a

1
2

Xl
i¼1

Xl
j¼1

yiyj xi � xj
� �

aiaj �
Xl
j¼1

aj

s:t
Xl
i¼1

yiai ¼ 0; ai � 0; i ¼ 1; . . .; l

ð12Þ
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It can be proved that Eq. (12) has a solution a� ¼ a�1; . . .; a
�
l

� �T
, so the SVM

classification problem has solution [9]:

w� ¼
Xl
i¼1

a�i yixi and b� ¼ yi �
Xl
i¼1

a�i yiðxixjÞ ð13Þ

SVM tries to transform linear regression problem to linear classification problem.
The basic idea is to create two separate parts by moving each sample in the training
set a distance e along the positive and negative y direction, as shown in Fig. 1.

We denote the two separate parts by Dþ ¼ xTi ; yi þ e
� �T

; i ¼ 1; . . .; l
n

and

D� ¼ xTi ; yi � e
� �T

; i ¼ 1; . . .; l
n

. Now our goal has been changed to be searching a

function to separate the two parts which is exactly the classification problem
described as following:

For given classification training set: xT1 ; y1 þ e
� �T

; 1
� �

; . . .; xTl ; yl þ e
� �T

; 1
� �

;
n

xT1 ; y1 � e
� �T

;�1
� �

; . . .; xTl ; yl � e
� �T

;�1
� �

g }, the aim is to solve the following

optimization problem [10]:

min
a�2R2l

1
2

Xl
i;j¼1

a�i � ai
� �

a�j � aj
� �

xixj
� �

þ e
Xl
i¼1

a�i þ ai
� ��Xl

i¼1

yi a
�
i � ai

� �
;

s:t
Xl
i¼1

a�i � ai
� � ¼ 0; a�i � 0; i ¼ 1; . . .l

ð14Þ

Fig. 1 The method to create two separate parts using training dataset
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which leads to regression problem solution as shown below:

w ¼
Xl
i¼1

a�i � ai
� �

xi; b ¼ yi � w � xj
� �þ e ð15Þ

where a� ¼ a1; a�1; . . .; al; a
�
l

� �T
is the solution of problem (14). Finally, the esti-

mate function g(x) has the form

y ¼ w � xð Þþ b ¼
Xl
i¼1

ða�i � aiÞ xi � xð Þþ b ð16Þ

4 Method

This section describes the method of motion prediction based on machine learning.

4.1 Data Preprocessing

The experiment data includes the gyroscope data, accelerometer data, optical flow
data and GPS data. Before training, preprocessing includes flow value filtering,
transformation from quaternions to Tait-Bryan angle and rotation matrix, flow
velocity conversion between inertial and airframe coordinate need to be done first.

The jittering of UAV when it is flying causes glitch in flow values. We can use a
low-pass filter to eliminate it, namely:

y nþ 1ð Þ ¼ w � x nð Þþ 1� wð Þ � yðnÞ ð17Þ

where x is the input of filter, y is the output, w is a coefficient to adjust the
smoothness of filtering.

As attitude is represented by quaternions in most flight control units, we need to
convert it to Tait-Bryan angle roll pitch yaw. The transformation formula shows as
below.

Roll ¼ a tan 2ð2 � w � xþ 2 � y � z; 1� 2 � x2 � 2 � y2Þ
Pitch ¼ a sinð2 � w � y� 2 � z � xÞ
Yaw ¼ a tan 2ð2 � w � zþ 2 � x � y; 1� 2 � y2 � 2 � z2Þ

ð18Þ
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The conversion between quaternions and rotation matrix is

R ¼
1� 2 � ðy2 þ z2Þ 2 � ðx � y� w � zÞ 2 � ðx � zþw � yÞ
2 � ðx � yþw � zÞ 1� 2 � ðx2 þ z2Þ 2 � ðy � z� w � xÞ
2 � ðx � z� w � yÞ 2 � ðy � zþw � xÞ 1� 2 � ðx2 þ y2Þ

2
4

3
5: ð19Þ

Now we can use R to get flow velocity in inertial frame {A}:

velA ¼ R � flow x; flow y; 0ð ÞT ð20Þ

4.2 Training Method

The training features are chosen as the sum of roll, pitch, yaw and acceleration from
all frames during a short time span t. And the output value is the flow velocity in
inertial coordinate. In our experiment, t is 1 s.

In this paper, the SVM regression is implemented by Libsvm tool [11]. The
training process includes the following steps: training vector formatting, selection
of kernel function, parameter tuning and training dataset choosing.

For training vector formatting, due to the format requirement of Libsvm, the
input training vector must meet the format

labelh i index1h i value1h i index2h i value2h i. . .

where labelh i is the output value, valueh i is the feature and indexh imust start from 1.
Before selection of kernel function, we take a look at formula (10). We know

that trigonometric function can be written as Euler formula as shown below.

cos hð Þ ¼ ejh þ e�jh

2
ð21Þ

Due to the trigonometric function of attitude angel in rotation matrix R, an
intuition is that the kernel function may have form like exponential function which
leads us to choosing the radial basis function as our kernel.

Kernel ¼ e�gamma� u�vj j2 ð22Þ

Experimental results show that radial basis function has higher estimate accuracy
than other kernels, which confirms our previous conjecture. Table 1 lists the four
kinds of kernel functions provided by Libsvm tool. We used four kernels alternately
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to train with the same training dataset and obtain corresponding estimation models
and use them for prediction with the same test dataset. The result is shown in Fig. 2.

Table 2 also displays the iteration number, STD (standard deviation), SCC
(square correlation coefficient) of training result using each kind of kernel.

Considering overall performance of iteration, STD and SCC, we chose the radial
basis function as the final kernel.

Parameter tuning is also a very important issue in training process. Table 3 lists
the main parameter used in training.

Fig. 2 The comparison of estimation result of four kernels

Table 2 The comparison of four kernels predict result

Kernel functions Iteration STD (m/s) SCC

Kernel 0 41,730 0.4811 0.7884

Kernel 1 380,851 1.0782 0.2472

Kernel 2 831 0.4781 0.8211

Kernel 3 424 1.0356 1.1566 × 10−9

Table 1 The kernel function lists

Kernel 0 Linear: u0�v
Kernel 1 Polynomial: gamma � u0 � vþ coef0ð Þdegree
Kernel 2 Radial basis: exp ð�gamma* u� vj j2Þ
Kernel 3 Sigmoid: tanh ðgamma*u0 � vþ coef0Þ

Table 3 The list of main parameters

-c cost Set cost value, default: 1

-p epsilon Set e in loss function, default: 0.1

−e tolerance Set the termination condition, default: 0.001
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Tuning parameter is like this. We keep other parameters constant and change the
target parameter a little. Step by step, we compare estimation results. Finally, we
choose the value that produces the most accurate estimation. Table 4 shows the
process of parameter tuning.

Notice that we only use training dataset in parameter tuning.
To choose training dataset, in the experiment, we train the regression models

based on each training dataset and use each model to estimate the same test dataset.
Finally compare corresponding estimation result and choose the training dataset
with the best estimation result.

5 Experiment and Result Analyze

5.1 Hardware Platform

Our experiment is based on a multi-rotor aircraft platform. Figure 3 shows the
hardware structure diagram. It mainly consists of pixhawk, odroid, and some other

Table 4 The process of parameters selecting

参数值 SCC 参数值 SCC 参数值 SCC

-c 0.1 0.77450 -p 0.050 0.81640 -e 0.0005 0.82103

-c 0.5 0.80054 -p 0.100 0.82018 -e 0.0010 0.821051

-c 1 − -p 0.150 0.82074 -e 0.0015 0.821028

-c 1.5 0.81842 -p 0.175 0.821051

-c 2 0.81962 -p 0.2 0.82972

-c 2.5 0.82018

-c 3 0.81974

PixhawkOdroid XU3 USB2.0

Wireless data 
link

Other sensors

USB3.0

USB3.0-OTG

External IMU

GPS/BD

U
S

B2.0

U
S

B2
.0

G
P

IO

Interal IMU

Wireless data 
link

Fig. 3 Hardware structure diagram
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sensors. Pixhawk based on Cortex-M4 processor is a high-performance
autopilot-on-module for multi-rotors and any other robotic platform. Odroid XU3
is the world’s first single-board computer with a heterogeneous multi-Processing
(HMP). In our experiment, the odroid is used to collect data from all kinds of
sensors including optical flow sensor, GPS, accelerometer, gyroscope, and so on.
The p×4flow is an optical flow smart camera which has a native resolution of
752 × 480 pixels and calculates optical flow on a 4× binned and cropped area at
400 Hz. All sensors data can be read into odroid and sent by Wi-Fi to ground
control station where the training datasets come from. Figure 4 shows the
multi-rotor aircraft used for collecting data.

5.2 Data Collection

Data we need to collect include gyroscope, accelerometer, optical flow, and GPS
data. When collecting data, it is required to keep UAV at a constant height, and
ensure that the flight action is rich enough. For instance, you can flight along a
circle path at a fixed height. We also need to collect datasets in various environ-
ments including GPS and optical flow are both available, GPS is available but
optical flow is not, optical flow is available while GPS is not.

The first kind of environment needs bright light, rich ground textures and
available GPS signal. The dataset collecting in this environment is used to train the
estimation model, in which the feature vector contains accelerometer and gyroscope
values and the output vector is velocity calculated from GPS or optical flow. The
second environment contains dull light that will cause optical flow sensor producing
significant error. The data from second environment is used to test the estimation
result when optical flow is unavailable based on some specified trained model. The
third environment has rich ground texture and bright light while GPS is unavailable.

Fig. 4 The multi-rotor
aircraft used in experiment
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The data is used to test the estimation result when GPS is unavailable. In order to
ensure the sufficient of training and testing dataset, the acquisition time is set to be
larger than 3 min in our experiment.

5.3 Training Data Checking

In our training process, the output vector is the optical flow velocity in inertial
frame. Because of the sensitivity to environment of optical flow value, there is a
high probability that optical flow value has significant error. On the other hand, the
attitude angle yaw is influenced by magnetometer fixed on UAV body. If there is a
certain intensity of magnetic field in environment which causes a significant effect
on magnetometer fixed on UAV, the yaw value will have significant error too.

The way to check training data is to plot the optical flow integration path using
flow value and attitude angel yaw, and compare it with path plotted from GPS
value, as shown in Fig. 7. If the two paths are consistent, it means optical flow and
yaw value have small error, otherwise, it means there is significant error in flow and
yaw value and they cannot be used as training dataset. Because the value from
optical flow is a two-dimensional vector in body frame, we need to transform it to
that in inertial frame using a two-dimensional rotation matrix calculated from angle
yaw. Then we integrate the flow value in inertial frame to get the flight path.
Finally, we plot the GPS path as the ground-truth path and compare it with optical
flow path.

5.4 Result and Analyse

Finally, we use svm-predict function provided by Libsvm to estimate velocity based
on estimation model. In our experiment, the ground-truth data is optical flow
velocity. We compared it with the estimated velocity to evaluate the performance of
our method. In addition, we plotted the ground-truth velocity integration path and
estimated velocity integration path, and compared them for more intuitive result.

Figures 5 and 6 show the comparison of ground-truth velocity and estimated
velocity using our method.

Table 5 lists the STD and SCC between predicted velocity and ground-truth.
Figure 7 shows the optical flow integration path and GPS path for checking

whether optical flow value is available.
Figure 8 shows the flow path and predicted velocity integration path from which

we can see the obvious path drift due to the velocity estimation error. But it should
be noticed that ground-truth and estimated path have consistent path shape change
which tell us our method is reasonable and feasible.
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Fig. 5 The x direction predicts result (yellow) and ground-truth velocity (blue)

Fig. 6 The y direction predicts result (yellow) and ground-truth velocity (blue)

Table 5 The STD and SCC of X/Y velocity

STD (standard deviation) SCC (squared correlation coefficient)

X方向 0.4811 m/s 0.8739

Y方向 0.5348 m/s 0.6429
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6 Conclusion

In this paper, we propose a method based on machine learning to estimate velocity
of multi-rotor UAV from inertial measurements without using integration method
as in a traditional inertial navigation system. Due to the input feature vector con-
tains only accelerometer and gyroscope readings, our estimation method can work
even when GPS and optical flow are both unavailable. This method can be used to
assist navigation when the UAV flies into bad environment.

We carried out the experiment in attitude-hold flight mode. We choose optical
flow velocity as ground-truth. The result shows that the correlation degree between
estimation velocity and Ground-Truth is 0.8739 at X direction and 0.6429 at
Y direction. In addition, we plot the estimation path and ground-truth path for
comparing intuitively.

Fig. 8 The p×4flow position (blue) and predict position (yellow)

Fig. 7 The p×4flow position (blue) and GPS position (yellow)
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In the future research, we will extend our work to free flight mode and wind
resisting flight mode, to make our method more flexible to different applications.
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