
2016 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 4-7 OCTOBER 2016, ALCALÁ DE 
HENARES, MADRID, SPAIN 

A Binary Robust Line Descriptor 
 

Shiwei Zhuang          *Danping Zou          Ling Pei          Di He         Peilin Liu 
Shanghai Key Laboratory of Navigation and Location-based Services 

Shanghai Jiao Tong University 
 
 

Abstract—Line features can be found extensively in man-made 
environments and are easier to be extracted than point features in 
low-texture scenes like indoor environments. Line features have been 
successfully applied to indoor localization recently. However, a good 
and efficient descriptor for line features is critical for real-time 
applications. Current line descriptors are mostly based on image 
gradients, involving expensive computations. Inspired by the ORB 
descriptors for point features, we propose a novel line descriptor 
using binary strings, called BRLD. To compute the binary line 
descriptor, we introduce a training method to select good pairings 
for binary tests. BRLD is robust under image transformations and 
noise. Experimental results show that BRLD's matching performance 
is close to that of the state-of-the-art line descriptors provided in 
OpenCV library, but ten times faster in both descriptor composition 
and matching.  
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I. INTRODUCTION  
Feature matching is the basis of many image processing 

algorithms and applications. While  most researches focus on  
point and region features [1][2][3], these kinds of features may 
not be available in low-texture scenes. In such cases, line 
features may present and can be adopted in vision applications 
such as  scene recognition, visual SLAM[4] and indoor 
localization. One critical issue is to extract the descriptor for 
lines. Present descriptors for lines like LBD[5] and MSLD[6] 
are mostly based on image gradients and can be too costly to 
be applied to real-time applications, especially on mobile 
devices. Since binary descriptors are very fast to compute and 
match, related work has already been done for point features. 
The most well-known and commonly-used ones are BRIEF[7] 
and its improved version ORB[8]. Inspired by these two point 
descriptors, we propose a novel binary descriptor for line 
features, called binary robust line descriptor(BRLD). BRLD is 
generated only by binary tests of the local appearance between 
two positions around a line, without any other constraints or 
prior information. After that, matching is done by calculating 
the Hamming distance between two descriptors, which is 
highly efficient for real-time applications.  

Instead of manually selecting those positions for binary 
tests, we introduce a training procedure to select good positions 
for binary tests automatically. The training is different from 
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that of ORB because line features are more complicated than  
point features - line features have different lengths and 
orientations. To address such problem, we first transform the 
local region of a line segment into a normalized coordinate 
system where training process is operated. After offline 
training process is done, computing BRLD and matching them 
can be very fast since only binary operations are involved. The 
matching performance is however as good as the state-of-art 
line descriptors. Our main contributions are as follows: 

1)We map the local region of a line to a normalized 
coordinate system according to the location and direction of 
this line, which makes BRLD invariant under image rotation, 
camera translation and scale changes. 

2)We have tested different approaches for building the 
training data, including manual labeling and automatic 
generation by geometric transformation. After throughout 
comparison and analysis, we find out a way to get training data 
that lead to the best matching performance. 

To test BRLD, we conducted experiments to evaluate its 
performance and compared it with the state-of-the-art line 
descriptor in OpenCV. The results show the robustness and 
efficiency of our approach. 

II. REALTED WORK 
Work related to line descriptors is much less than point 

ones. In earlier research, geometrical information is usually 
used for line matching[9][10]. However, such method requires 
prior geometrical relationship between images. Lourakis et 
al.[11] utilize projective invariance for line matching, but their 
approach is restricted to planar scenes. Herbert and Vittorio[12] 
present a line matching method depending on color histogram. 
The obvious weakness is that their method relies on color 
information of the image and may fail in situations where color 
discrimination is not strong such as gray image.  

Wang et al. propose a line descriptor called mean-standard 
deviation line descriptor (MSLD) [6] . It is generated by a 
SIFT-like strategy, based on the gradients in pixel support 
region. Although it only relies on local appearance, MSLD 
only handles small baseline stereo line matching and it is not 
scale-invariant. Verhagen et al. solve the scale problem by 
applying five rules to the original descriptor to confirm the 
corresponding relationship of the descriptors. Another 
improved version of MSLD, called line band descriptor (LBD), 
is proposed by Lilian Zhang and Reinhard Koch [5]. Different 
from MSLD, both a global and a local Gaussian window are 



2016 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 4-7 OCTOBER 2016, ALCALÁ DE 
HENARES, MADRID, SPAIN 
assigned to each row in the line support region, which makes 
LBD more robust and computationally efficient than MSLD. 
With the process of detecting lines in scale space, LBD also 
handles scale changes well. However, both Verhagen's and 
Zhang's approaches still have computational costs too high to 
meet real-time requirements, especially for mobile applications. 
The storage of these float-type descriptors may not be 
economical enough for some applications where the size of 
data is growing larger. 

By contrast, the approach we propose in this paper is highly 
efficient to be computed and robust to image transformations. 
Inspired by BRIEF and ORB, we adopt their main idea to lines.  
The descriptor is also built by comparing the gray-level of two 
image positions. However, line features are very different from 
point features since they have different orientations and lengths. 
A new way of choosing local region and selecting test points is 
studied in this work to adapt the binary-test idea to the 
characteristics of lines.  

III. OUR APPROACH 
In this section, we present our approach in detail. For line 

detection, we use line segment detection (LSD)[13] to detect 
lines in each image. There are two critical steps to compute line 
descriptors: coordinate transformation and the training process 
to select good binary-test positions, which are elaborated below.  

A. Choosing the local region of a line 
The greatest difference between points and lines is that 

lines have different lengths and directions while points don't. 
So, to describe a line, the choice of local region of a line cannot 
be as trivial as that of a point. For points, we can simply choose 
a rectangular area with fixed size around a key point as local 
region to calculate the descriptor, like BRIEF[7] and ORB[8]. 
Since each line has its own length and direction, a 
normalization is needed to fix the way of generating the 
descriptor and the dimension of the descriptor. In MSLD[6] 
and LBD[5], they both choose a rectangular region centered at 
the line as the local region, or in the other word, pixel support 
region (PSR). The pixel support region is divided into several 
sub-regions and a descriptor is calculated for each sub-region 
by a SIFT-like strategy. The normalization of length is done by 
constructing the final descriptor with the mean and standard 
deviation of these sub-region descriptors.  

In our approach, we introduce a novel method of choosing 
the local region and a coordinate transformation to adapt to 
different lines.  

First, we introduce a normalized coordinate system in 
which all local regions of lines are expressed. All lines are 
normalized so that they have the unit length in the normalized 
frame and locate at x-axis marked in red as shown in Fig. 1. 
The line is also divided into M segments for sampling. The 
direction perpendicular to the line is not normalized as we 
choose a constant window size W for all lines.  

 
Fig.1 Local region in the normalized system and real image. The red line is the 
extracted key line. The area within the green lines is the local region. 

 

After normalization, a transformation between the 
normalized coordinates and pixel positions is established. The 
transformation is computed as the following. Denote the 
coordinate of a point in normalized system by (��� ��). We 
write it in homogeneous form ��  = ���� ��� �	
 . Let the 
coordinates of line endpoints in the image be (��� ��), (��� ��), 
where ��  ��. The first step is scaling: 

                                     �� � ��� � ��                                 (1) 

                                  �� � �� � �� � �� � ��                               (2) 

Here l is the length of the line. The second step is rotation: 

                                     �� � ��� � ��                                 (3) 

                            �� � ����� ����� ����� ���� �� � ��                      (4) 

                                     � � ��� �!��"	                               (5) 

where k is the slope of the line. The last one is translation: 

                                      � � ��# � ��                                  (6) 

                                  �# � �� � ��� � ��� � � �                              (7) 

Let  X = �$� %� �	
. �$� %	 is the actual coordinate of �� in 
the real image. The overall transformation can be written as: 

                                      � � �� � ��                                   (8) 

where � � ��# � �� � ��  is the transformation matrix. For 
each detected line, all pixels in the local region are mapped into 
the normalized coordinate system by above transformation. 
The binary-test position sampling are all operated on the 
normalized coordinate system. In the following section, we'll 
describe the method of sampling good positions for binary tests. 

B. Selecting good sampling positions by training 
As the ORB descriptor, the feature vector of BRLD 

consists of many binary values that are obtained from 
comparing the intensity between two pixels. The key issue is 
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how to sample those pixel pairs for comparison. We propose 
to use training to automatically extract those pairs. 

To generate the training dataset, we take pictures at 
different locations and from different viewpoints. In each 
location we take about five or six pictures. We use line 
segment detection (LSD) to detect line in the images. Then we 
manually label those segments belonging to the same line. We 
label those lines whose local regions have distinctive textures. 

It has been shown in [8] that, a good test pair should 
generate binary features on the training images whose average 
value is close to 0.5. Apart from that, a test pair that leads to 
binary features with high variance is more discriminative. 
Therefore, we search for those test pairs with a mean close to 
0.5. In our normalized local region, there are (W+1)*(M+1) 
points. We do exhaustive search among all possible test pairs, 
so the number of tests are &�'(�	��)(�	� .  

To avoid noises, instead of using single pixels, we use the 
average intensity of a sub-window to do the binary test. In our 
test, the window size is chosen as 5*5. A binary test is done as 
follows: 

• For a test pair ���� ��	 in the image, a binary test * is 
defined by: 

               *���� ��	 � � +�� ,-�.���	 / .���	�� ,-�.���	 0 .���	                 (9) 

where .���	 , .���	  are the average intensities of the 
sub-windows centered at point ��, ��. 

• To speed up, we use an integral image instead of direct 
computation of the sum. The integral image is a 2-
dimentional convolution of the original image and a 
convolution template matrix S. The 5*5 matrix S is 
defined as: 

                       1 � 2�345 6 �3457 8 7�345 6 �3459                   (10)    

Then the average intensity is directly calculated by the 
gray-level of a point in the integral image.  

We do binary tests against all lines in all images in our 
training set. For each test pair, we get a high-dimensional 
binary vector. We compute the mean of these vectors and order 
them by the distance from 0.5. The first 1000 test pairs are 
selected for the following training. 

After obtaining these candidate pairs, we choose D pairs 
from them according to their matching score to form a pair set. 
D also is the dimension of the final descriptor. We first choose 
randomly from these candidate pairs and repeat this process 
until 100 pair sets are formed. Each set contains D test pairs. 
Then we use each set to calculate the descriptor for labeled 
lines in the image. We use different descriptors derived from 
different pair sets to match lines. The matching is done by 
calculating the Hamming distance between two descriptors. 
The one gets the minimum value is considered as a match. As 
the ground truth is available, the matching performance for 
each kind of descriptors can be evaluated. The pair set that 

produces the best matching score is selected to compute the 
line descriptors. 

The training process is time consuming, but it requires to be 
done only once. Only are the final test pairs after training used 
for computation of descriptors. The binary tests as well as 
calculation of Hamming distance can be done very fast in 
practice. We summarize the training process in the following 
steps: 

1. Set up a normalized coordinate system and establish a 
mapping between the normalized coordinate system and the 
rectangular area around the line. 

2. Detect lines for all images in the training set with LSD 
detector and label the segments belong to the same line in 
different images.  

3. Sample possible test pairs in the normalized coordinate 
system and map them to the original image to compute the 
binary feature value. 

4. Run binary test against all possible test pairs of all lines 
in all images in the training set. For each test pair, we get a 
high-dimensional binary vector. 

5. Sort these vectors by their distance from a mean of 0.5 
and store the first 1000 pairs, forming a 1000*4 matrix C. 

6. Randomly pick D pairs from C without repetition to get 
a candidate set and repeat the picking until 100 candidate sets 
are found. 

7. Evaluate the matching performance by using different 
descriptors from different pair sets. The one with the best 
performance is used to compute the line descriptor. 

IV. EXPERIMENT 

A. Training dataset 
The training data are generated from two approaches. The 

first one is manual labeling (see in Fig. 2). However, it 
requires huge workload to obtain even a moderately large 
training set.  Therefore, we also adopt the second approach to 
get the training data. That is, we use the automatic way to 
generate the training data by geometric transformation. The 
basic idea is to use homography to transform an image into a 
new one. The line correspondences can be easily established 
by the pre-known geometric relationship. 

 
Fig.2 Manually-labeled samples in our training set. 
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We choose input images from the VOC 2008 dataset[14]. 
These images mainly capture indoor environments and the 
appearance of buildings. Therefore these images contain more 
lines. We choose one of them as a reference, and apply 
random homography transformations to generate query 
images. The homography is composited by different 
distortion, rotation and scale change and defined as: 

 

                   � � �:�;	:<��=	 >?� �� ?�@ :�=	               (11) 

 
                                    A � B� CC �D                                 (12) 
 

The right hand term :<��=	 >?� �� ?�@ :�=	 represents the 

distortion, which is done by rotating the image by an angle 
of�=, changing the scale in the vertical and horizontal direction 
of the rotated image by ?� and ?�, and rotating it back. :�;	 
is the rotation matrix, where ; is the rotation angle. s is the 
scale factor, which gives the image an entire scale 
transformation. 

In our experiment, the value ranges of these parameters are 
listed in Table I. 

TABLE I.  PARAMETER VALUE RANGES 

Parameter Value Range = [0,2pi] 

?� [0.8,1.2] 

?� [0.8,1.2] 

; [-pi/12,pi/12] 

s [0.5,2] 

Since all homographies are known, the ground truth of line 
correspondences can be simply established between the 
reference image and query image. We also add Gaussian noises 
and intensity changes to the transformed image to mimic real-
world situations. The Gaussian noise has a mean of 0 and a 
variance ranges from 0.001 to 0.002. The average PSNR is 
28.7 dB. The overall pixel intensity in the query image changes 
from 80% to 120% of that in the reference. Fig. 3 shows some 
examples of our training set. 

 
 

Fig. 3 Some automatically generated samples in our training set. 

The lines extracted by LSD detector will never exactly 
coincide with the lines by homography transformation in 
practice. So we perturb the endpoints of each line within a 
range of five pixels, which makes the line extraction more like 
practical ones. 

In the following sections, we first evaluate how some 
critical parameters, including dimension of descriptors, 
window size of local regions and choice of training sets, affect 
the final matching performance of the proposed approach. 

B. The dimension of the descriptor 
The dimension of the descriptor affects both the matching 

performance and the efficiency. We test different dimensions 
of 64, 128, 256 and 512. The sizes of local region are kept the 
same. This experiment is to evaluate the performance of our 
algorithm using different dimensions of descriptors. 

In our experiment, the dimension is set after we obtain 
candidate test pairs with a mean value close to 0.5. Then we 
randomly pick D test pairs from those candidate test pairs until 
100 sets are formed, of which D dimension. We use exactly the 
same training set to get the final result of test pair locations. 
Finally a same test set is used to evaluate the performance of 
descriptors with different dimensions. Both the training and 
test set has around 200 images with ground truth. The results 
are shown in Fig. 4. 

 
Fig. 4 The matching performance of descriptors with a dimension of 64, 128,  
256 and 512.  

 

The average correctness over the test set are 39.16%, 
48.35%, 48.57% and 46.05% for descriptors with a dimension 
of 64, 128, 256 and 512. From the result we can see that 128-
bit descriptor is the best one considering the tradeoff between 
computation cost and matching performance. 

C. Window size of local region and number of equal parts 
We change the window size of local region W in our 

experiment to study its impact on descriptor performance. For 
all evaluations, we fix the value of M to be 10 for 
discretization. We vary W from 20 to 60, and record the 
average number of correct matches generated by all candidates 
on 20 images with ground truth. Fig .5 shows our result. 
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Fig.5 The average number of inliers when the window size of local region 
changes. 

 

As we can see, when the window size of local region 
changes from 30 to 40, the number of inliers has a significant 
raise. However, after W exceeds 50, the increase becomes 
gentle. The result shows that descriptors generated in a small 
window is not discriminative enough while a wide local 
region may carry abundant information. To balance the 
computational cost and the matching performance, we choose 
40 as the window size of local region in our experiment. 
Furthermore, we study the influence of the number of equal 
parts M on the descriptor performance. In the experiment, we 
fix the value of W to be 40 and vary M from 10 to 30. Results 
are shown in Fig. 6. 

 
Fig.6 The average number of inliers when the number of equal parts changes. 

In Fig. 6, the descriptor performance is the best when M = 
20. A value of M either too big or too small leads to a bad 
performance. Since the length of lines in an image has a wide 
range, we need to choose a value of M to cover as many pixels 
in the local region as possible while avoiding too much 
abundant information. Judging from the results, we choose M 
to be 20. 

D. The choice of training set and the distribution of sampling 
positions 
The training set is important to the performance of our 

descriptor. In our experiment, we use three different training 
sets to sample locations for test pairs. The first one is the 
image set used in Zhang and Koch's work[5]. The images has 

been used for the evaluation of LBD descriptor. It contains 
eight groups of images with different transformations 
including illumination, rotation, compression, blurring, 
occlusion, low-texture scene, viewpoint changes and scale 
changes. These images are all planar scenes or taken with 
fixed camera position. Thus, the image transformations can be 
computed and the ground truth can be acquired by them. The 
second training set is our manually-labeled image set. This set 
contains over 100 images taken from different places with 
combined transformations. Images are captured mostly in 
indoor scenes and taken with no limitations. This set is quite 
challenging for line matching. The last one is a combination of 
automatically generated images by homography 
transformations and manually-labeled ones. We select 100 
reference images from the VOC 2008 set[14]. Each reference 
image generates 20 query images. And the number of 
manually-labeled images in this set is over 200. 

We set M = 10, W = 30 and D = 256. Since these training 
sets are quite different, the distribution of the final sampling 
locations turns out to differ widely. Fig.7 shows the 
distributions of these sets of test pairs acquired from training. 

 
 

 
 

Fig. 7 Distribution of binary tests. (a) The training result of  Zhang's dataset. 
(b)The training result of our hand-labeled dataset. (c)The training result of the 
combined dataset. 

 

From the result we can see the obvious difference among 
training results from different datasets. In the result from 
Zhang's set, the two positions of a test pair are located on the 
same side of the line. No pixels on different sides are found. In 
the result from the hand-labeled set, most selected test pairs are 
pixels on different sides. And in the result from the third set, 
both pixel pairs on the same side and different sides are 
selected. We do some matching tests with these results on the 
same test set as shown in Fig. 8. 

(a) (b) 

(c) 



2016 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 4-7 OCTOBER 2016, ALCALÁ DE 
HENARES, MADRID, SPAIN 

 
Fig. 8 The number of inliers using different distribution of sample locations. 
There are in total 15637 lines computed from 138 manually-labeled images. 

 

The result shows that the matching performance is the best 
when the location of test pairs follows distribution III which 
contains pixels both on the same side and on the different sides. 
It also shows that the choice of training set should be carefully 
collected, otherwise it may leads to a bad result like 
Distribution I. For instance, images in Zhang's dataset are 
groups with single transformations. The size of this dataset is 
too small and the transformations of images in it are too simple 
for the training. Images with combined transformations are 
better than those with a single transformation, since the result 
of our hand-labeled set outperforms that of Zhang's set. 

E. Performance of BRLD 
In this section, we evaluate the performance of the 

proposed BRLD descriptor. First, we test the robustness of 
BRLD against image rotations. The results are shown in Fig. 9. 

 
Fig. 9 Matching performance of BRLD under different image rotations. 

 
We use a rotation matrix to generate query images. As we 

can see, BRLD is robust to image rotations. Only 14% 
performance degrade has been observed under a 90 degree 
rotation. The reason is largely due to the transformation 
between the normalized coordinate system and the real image 
before sampling the test pairs. 

We also test the performance of BRLD under different 
level of image noise. We add Gaussian noise with variance 
ranges from 0.001 to 0.02. The PSNR ranges from 29.98 dB to 
17.25 dB. The matching performance of BRLD is shown in 
Fig. 10. 

 
Fig. 10 Matching performance of BRLD under image noise. 
 

The result shows that the performance of BRLD is still 
promising under even large image noise. Since images in the 
training set also contains noises and the binary test is done 
from the integral images, the robustness of BRLD to noise is 
not out of  expectation. 

In the following, we compare the proposed approach with 
the state-of-the-art LBD descriptor that has been already 
implemented in OpenCV. First, we compare the matching 
correctness of BRLD and LBD on our test set which contains 
216 manually-labeled images. These images are not included 
in the training set. LBD descriptors are generated using 
functions with default parameters in OpenCV. We set M = 20, 
W = 40 and Dimension = 128 for BRLD. The training set 
contains 2000 images automatically generated by 
homographic warp and more than 200 manually-labeled 
images. The result is shown in Fig. 11. 

 
Fig.11 The average matching correctness of BRLD and LBD.  

 

The result shows that the percentage of inliers computed by 
BRLD is close to that of LBD. The average correctness over 
216 testing images is 54.06% for BRLD and 56.42% for LBD. 
Fig. 12 shows an illustration of the BRLD matching results. 
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Fig.12 Matching results of BRLD on two pairs of labeled images. The 
percentage of inliers in the first image pair is 36/53, and that in the second one 
is 18/31. 

 

The manually-labeled images in our test set are mostly low-
texture indoor scenes and lines in these images have high 
similarity. However, BRLD descriptor still has a relatively 
good performance without any other constraints.  

Moreover, we compare the running-time efficiency of 
BRLD and LBD. The tests are performed on an Intel i7 2.4 
GHz processor. We compute BRLD and LBD on 20 612*816 
images from our test set. The descriptor length is 128 for 
BRLD and 32 for LBD. The results are shown in Table II. 

TABLE II.  THE AVERAGE TIME OF COMPOSITION AND MATCHING 

Descriptor Descriptor composition 
time per frame (ms) 

Matching time per 
frame (ms) 

BRLD 4.89 1.74 

LBD 60.98 10.56 

 

10568 lines are detected by LSD in 20 images in total. 
Both the time of descriptor extraction and matching are 
recorded. We can see that BRLD is an order of magnitude 
faster than LBD. 

V. CONCLUSION 
In this paper, we have proposed a novel binary line 

descriptor - BRLD. We compared it with the-state-of-the-art 
descriptor regarding both matching correctness and running 
time efficiency. The results show that our method achieves a 
matching performance close to the descriptors implemented in 
OpenCV, while is one order of magnitude faster. The 

computation cost of the proposed descriptor is low enough to 
meet real-time requirements of mobile device applications. 

Two key techniques has been applied in our approach.  
Firstly, we establish a mapping between a normalized 
coordinate system and the local patch of a line to normalize 
different orientations and lengths, which makes the descriptor 
robust to geometric transformations. Secondly, we use a 
training approach to sampling positions automatically for 
binary tests. After conducting an extensive study, we find the 
parameters and way for collecting training datasets that leads to 
a descriptor which is the most robust and discriminative. 

In our experiments, we just use three kinds of database with 
ground truth - images automatically generated by homography, 
images taken with known homography and manually-labeled 
images. Since the change of training set - both the size of it and 
the types of images in it - have a great influence on descriptor 
performance, we will collect more images with ground truth to 
find a better training set to improve the performance in the 
future work. Furthermore, the training method also has much 
space to improve. With enough images with ground truth, 
some state-of-art deep learning methods such as convolutional 
neutral network[15] may be utilized. The matching method in 
our experiment is just using descriptor distance. However, 
other information could also be combined to improve the 
matching performance, such as distance and orientation 
closeness. 
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