
2016 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 4-7 OCTOBER 2016, ALCALÁ DE
HENARES, MADRID, SPAIN

A Binary Robust Line Descriptor

Shiwei Zhuang *Danping Zou Ling Pei Di He Peilin Liu
Shanghai Key Laboratory of Navigation and Location-based Services

Shanghai Jiao Tong University

Abstract—Line features can be found extensively in man-made
environments and are easier to be extracted than point features in
low-texture scenes like indoor environments. Line features have been
successfully applied to indoor localization recently. However, a good
and efficient descriptor for line features is critical for real-time
applications. Current line descriptors are mostly based on image
gradients, involving expensive computations. Inspired by the ORB
descriptors for point features, we propose a novel line descriptor
using binary strings, called BRLD. To compute the binary line
descriptor, we introduce a training method to select good pairings
for binary tests. BRLD is robust under image transformations and
noise. Experimental results show that BRLD's matching performance
is close to that of the state-of-the-art line descriptors provided in
OpenCV library, but ten times faster in both descriptor composition
and matching.

Keywords—Line Feature; Binary Descriptor; Feature Selection

I. INTRODUCTION
Feature matching is the basis of many image processing

algorithms and applications. While most researches focus on
point and region features [1][2][3], these kinds of features may
not be available in low-texture scenes. In such cases, line
features may present and can be adopted in vision applications
such as scene recognition, visual SLAM[4] and indoor
localization. One critical issue is to extract the descriptor for
lines. Present descriptors for lines like LBD[5] and MSLD[6]
are mostly based on image gradients and can be too costly to
be applied to real-time applications, especially on mobile
devices. Since binary descriptors are very fast to compute and
match, related work has already been done for point features.
The most well-known and commonly-used ones are BRIEF[7]
and its improved version ORB[8]. Inspired by these two point
descriptors, we propose a novel binary descriptor for line
features, called binary robust line descriptor(BRLD). BRLD is
generated only by binary tests of the local appearance between
two positions around a line, without any other constraints or
prior information. After that, matching is done by calculating
the Hamming distance between two descriptors, which is
highly efficient for real-time applications.

Instead of manually selecting those positions for binary
tests, we introduce a training procedure to select good positions
for binary tests automatically. The training is different from

 * Corresponding author.
 Email address: dpzou@sjtu.edu.cn

978-1-5090-2425-4/16/$31.00 ©2016 IEEE

that of ORB because line features are more complicated than
point features - line features have different lengths and
orientations. To address such problem, we first transform the
local region of a line segment into a normalized coordinate
system where training process is operated. After offline
training process is done, computing BRLD and matching them
can be very fast since only binary operations are involved. The
matching performance is however as good as the state-of-art
line descriptors. Our main contributions are as follows:

1)We map the local region of a line to a normalized
coordinate system according to the location and direction of
this line, which makes BRLD invariant under image rotation,
camera translation and scale changes.

2)We have tested different approaches for building the
training data, including manual labeling and automatic
generation by geometric transformation. After throughout
comparison and analysis, we find out a way to get training data
that lead to the best matching performance.

To test BRLD, we conducted experiments to evaluate its
performance and compared it with the state-of-the-art line
descriptor in OpenCV. The results show the robustness and
efficiency of our approach.

II. REALTED WORK
Work related to line descriptors is much less than point

ones. In earlier research, geometrical information is usually
used for line matching[9][10]. However, such method requires
prior geometrical relationship between images. Lourakis et
al.[11] utilize projective invariance for line matching, but their
approach is restricted to planar scenes. Herbert and Vittorio[12]
present a line matching method depending on color histogram.
The obvious weakness is that their method relies on color
information of the image and may fail in situations where color
discrimination is not strong such as gray image.

Wang et al. propose a line descriptor called mean-standard
deviation line descriptor (MSLD) [6] . It is generated by a
SIFT-like strategy, based on the gradients in pixel support
region. Although it only relies on local appearance, MSLD
only handles small baseline stereo line matching and it is not
scale-invariant. Verhagen et al. solve the scale problem by
applying five rules to the original descriptor to confirm the
corresponding relationship of the descriptors. Another
improved version of MSLD, called line band descriptor (LBD),
is proposed by Lilian Zhang and Reinhard Koch [5]. Different
from MSLD, both a global and a local Gaussian window are

2016 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 4-7 OCTOBER 2016, ALCALÁ DE
HENARES, MADRID, SPAIN
assigned to each row in the line support region, which makes
LBD more robust and computationally efficient than MSLD.
With the process of detecting lines in scale space, LBD also
handles scale changes well. However, both Verhagen's and
Zhang's approaches still have computational costs too high to
meet real-time requirements, especially for mobile applications.
The storage of these float-type descriptors may not be
economical enough for some applications where the size of
data is growing larger.

By contrast, the approach we propose in this paper is highly
efficient to be computed and robust to image transformations.
Inspired by BRIEF and ORB, we adopt their main idea to lines.
The descriptor is also built by comparing the gray-level of two
image positions. However, line features are very different from
point features since they have different orientations and lengths.
A new way of choosing local region and selecting test points is
studied in this work to adapt the binary-test idea to the
characteristics of lines.

III. OUR APPROACH
In this section, we present our approach in detail. For line

detection, we use line segment detection (LSD)[13] to detect
lines in each image. There are two critical steps to compute line
descriptors: coordinate transformation and the training process
to select good binary-test positions, which are elaborated below.

A. Choosing the local region of a line
The greatest difference between points and lines is that

lines have different lengths and directions while points don't.
So, to describe a line, the choice of local region of a line cannot
be as trivial as that of a point. For points, we can simply choose
a rectangular area with fixed size around a key point as local
region to calculate the descriptor, like BRIEF[7] and ORB[8].
Since each line has its own length and direction, a
normalization is needed to fix the way of generating the
descriptor and the dimension of the descriptor. In MSLD[6]
and LBD[5], they both choose a rectangular region centered at
the line as the local region, or in the other word, pixel support
region (PSR). The pixel support region is divided into several
sub-regions and a descriptor is calculated for each sub-region
by a SIFT-like strategy. The normalization of length is done by
constructing the final descriptor with the mean and standard
deviation of these sub-region descriptors.

In our approach, we introduce a novel method of choosing
the local region and a coordinate transformation to adapt to
different lines.

First, we introduce a normalized coordinate system in
which all local regions of lines are expressed. All lines are
normalized so that they have the unit length in the normalized
frame and locate at x-axis marked in red as shown in Fig. 1.
The line is also divided into M segments for sampling. The
direction perpendicular to the line is not normalized as we
choose a constant window size W for all lines.

Fig.1 Local region in the normalized system and real image. The red line is the
extracted key line. The area within the green lines is the local region.

After normalization, a transformation between the
normalized coordinates and pixel positions is established. The
transformation is computed as the following. Denote the
coordinate of a point in normalized system by (��� ��). We
write it in homogeneous form �� = ���� ��� �	
 . Let the
coordinates of line endpoints in the image be (��� ��), (��� ��),
where �� ��. The first step is scaling:

 �� � ��� � �� (1)

 �� � �� � �� � �� � �� (2)

Here l is the length of the line. The second step is rotation:

 �� � ��� � �� (3)

 �� � ����� ����� ����� ���� �� � �� (4)

 � � ��� �!��"	 (5)

where k is the slope of the line. The last one is translation:

 � � ��# � �� (6)

 �# � �� � ��� � ��� � � � (7)

Let X = �$� %� �	
. �$� %	 is the actual coordinate of �� in
the real image. The overall transformation can be written as:

 � � �� � �� (8)

where � � ��# � �� � �� is the transformation matrix. For
each detected line, all pixels in the local region are mapped into
the normalized coordinate system by above transformation.
The binary-test position sampling are all operated on the
normalized coordinate system. In the following section, we'll
describe the method of sampling good positions for binary tests.

B. Selecting good sampling positions by training
As the ORB descriptor, the feature vector of BRLD

consists of many binary values that are obtained from
comparing the intensity between two pixels. The key issue is

2016 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 4-7 OCTOBER 2016, ALCALÁ DE
HENARES, MADRID, SPAIN
how to sample those pixel pairs for comparison. We propose
to use training to automatically extract those pairs.

To generate the training dataset, we take pictures at
different locations and from different viewpoints. In each
location we take about five or six pictures. We use line
segment detection (LSD) to detect line in the images. Then we
manually label those segments belonging to the same line. We
label those lines whose local regions have distinctive textures.

It has been shown in [8] that, a good test pair should
generate binary features on the training images whose average
value is close to 0.5. Apart from that, a test pair that leads to
binary features with high variance is more discriminative.
Therefore, we search for those test pairs with a mean close to
0.5. In our normalized local region, there are (W+1)*(M+1)
points. We do exhaustive search among all possible test pairs,
so the number of tests are &�'(�	��)(�	� .

To avoid noises, instead of using single pixels, we use the
average intensity of a sub-window to do the binary test. In our
test, the window size is chosen as 5*5. A binary test is done as
follows:

• For a test pair ���� ��	 in the image, a binary test * is
defined by:

 *���� ��	 � � +�� ,-�.���	 / .���	�� ,-�.���	 0 .���	 (9)

where .���	 , .���	 are the average intensities of the
sub-windows centered at point ��, ��.

• To speed up, we use an integral image instead of direct
computation of the sum. The integral image is a 2-
dimentional convolution of the original image and a
convolution template matrix S. The 5*5 matrix S is
defined as:

 1 � 2�345 6 �3457 8 7�345 6 �3459 (10)

Then the average intensity is directly calculated by the
gray-level of a point in the integral image.

We do binary tests against all lines in all images in our
training set. For each test pair, we get a high-dimensional
binary vector. We compute the mean of these vectors and order
them by the distance from 0.5. The first 1000 test pairs are
selected for the following training.

After obtaining these candidate pairs, we choose D pairs
from them according to their matching score to form a pair set.
D also is the dimension of the final descriptor. We first choose
randomly from these candidate pairs and repeat this process
until 100 pair sets are formed. Each set contains D test pairs.
Then we use each set to calculate the descriptor for labeled
lines in the image. We use different descriptors derived from
different pair sets to match lines. The matching is done by
calculating the Hamming distance between two descriptors.
The one gets the minimum value is considered as a match. As
the ground truth is available, the matching performance for
each kind of descriptors can be evaluated. The pair set that

produces the best matching score is selected to compute the
line descriptors.

The training process is time consuming, but it requires to be
done only once. Only are the final test pairs after training used
for computation of descriptors. The binary tests as well as
calculation of Hamming distance can be done very fast in
practice. We summarize the training process in the following
steps:

1. Set up a normalized coordinate system and establish a
mapping between the normalized coordinate system and the
rectangular area around the line.

2. Detect lines for all images in the training set with LSD
detector and label the segments belong to the same line in
different images.

3. Sample possible test pairs in the normalized coordinate
system and map them to the original image to compute the
binary feature value.

4. Run binary test against all possible test pairs of all lines
in all images in the training set. For each test pair, we get a
high-dimensional binary vector.

5. Sort these vectors by their distance from a mean of 0.5
and store the first 1000 pairs, forming a 1000*4 matrix C.

6. Randomly pick D pairs from C without repetition to get
a candidate set and repeat the picking until 100 candidate sets
are found.

7. Evaluate the matching performance by using different
descriptors from different pair sets. The one with the best
performance is used to compute the line descriptor.

IV. EXPERIMENT

A. Training dataset
The training data are generated from two approaches. The

first one is manual labeling (see in Fig. 2). However, it
requires huge workload to obtain even a moderately large
training set. Therefore, we also adopt the second approach to
get the training data. That is, we use the automatic way to
generate the training data by geometric transformation. The
basic idea is to use homography to transform an image into a
new one. The line correspondences can be easily established
by the pre-known geometric relationship.

Fig.2 Manually-labeled samples in our training set.

2016 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 4-7 OCTOBER 2016, ALCALÁ DE
HENARES, MADRID, SPAIN

We choose input images from the VOC 2008 dataset[14].
These images mainly capture indoor environments and the
appearance of buildings. Therefore these images contain more
lines. We choose one of them as a reference, and apply
random homography transformations to generate query
images. The homography is composited by different
distortion, rotation and scale change and defined as:

 � � �:�;	:<��=	 >?� �� ?�@ :�=	 (11)

 A � B� CC �D (12)

The right hand term :<��=	 >?� �� ?�@ :�=	 represents the

distortion, which is done by rotating the image by an angle
of�=, changing the scale in the vertical and horizontal direction
of the rotated image by ?� and ?�, and rotating it back. :�;	
is the rotation matrix, where ; is the rotation angle. s is the
scale factor, which gives the image an entire scale
transformation.

In our experiment, the value ranges of these parameters are
listed in Table I.

TABLE I. PARAMETER VALUE RANGES

Parameter Value Range = [0,2pi]

?� [0.8,1.2]

?� [0.8,1.2]

; [-pi/12,pi/12]

s [0.5,2]

Since all homographies are known, the ground truth of line
correspondences can be simply established between the
reference image and query image. We also add Gaussian noises
and intensity changes to the transformed image to mimic real-
world situations. The Gaussian noise has a mean of 0 and a
variance ranges from 0.001 to 0.002. The average PSNR is
28.7 dB. The overall pixel intensity in the query image changes
from 80% to 120% of that in the reference. Fig. 3 shows some
examples of our training set.

Fig. 3 Some automatically generated samples in our training set.

The lines extracted by LSD detector will never exactly
coincide with the lines by homography transformation in
practice. So we perturb the endpoints of each line within a
range of five pixels, which makes the line extraction more like
practical ones.

In the following sections, we first evaluate how some
critical parameters, including dimension of descriptors,
window size of local regions and choice of training sets, affect
the final matching performance of the proposed approach.

B. The dimension of the descriptor
The dimension of the descriptor affects both the matching

performance and the efficiency. We test different dimensions
of 64, 128, 256 and 512. The sizes of local region are kept the
same. This experiment is to evaluate the performance of our
algorithm using different dimensions of descriptors.

In our experiment, the dimension is set after we obtain
candidate test pairs with a mean value close to 0.5. Then we
randomly pick D test pairs from those candidate test pairs until
100 sets are formed, of which D dimension. We use exactly the
same training set to get the final result of test pair locations.
Finally a same test set is used to evaluate the performance of
descriptors with different dimensions. Both the training and
test set has around 200 images with ground truth. The results
are shown in Fig. 4.

Fig. 4 The matching performance of descriptors with a dimension of 64, 128,
256 and 512.

The average correctness over the test set are 39.16%,
48.35%, 48.57% and 46.05% for descriptors with a dimension
of 64, 128, 256 and 512. From the result we can see that 128-
bit descriptor is the best one considering the tradeoff between
computation cost and matching performance.

C. Window size of local region and number of equal parts
We change the window size of local region W in our

experiment to study its impact on descriptor performance. For
all evaluations, we fix the value of M to be 10 for
discretization. We vary W from 20 to 60, and record the
average number of correct matches generated by all candidates
on 20 images with ground truth. Fig .5 shows our result.

2016 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 4-7 OCTOBER 2016, ALCALÁ DE
HENARES, MADRID, SPAIN

Fig.5 The average number of inliers when the window size of local region
changes.

As we can see, when the window size of local region
changes from 30 to 40, the number of inliers has a significant
raise. However, after W exceeds 50, the increase becomes
gentle. The result shows that descriptors generated in a small
window is not discriminative enough while a wide local
region may carry abundant information. To balance the
computational cost and the matching performance, we choose
40 as the window size of local region in our experiment.
Furthermore, we study the influence of the number of equal
parts M on the descriptor performance. In the experiment, we
fix the value of W to be 40 and vary M from 10 to 30. Results
are shown in Fig. 6.

Fig.6 The average number of inliers when the number of equal parts changes.

In Fig. 6, the descriptor performance is the best when M =
20. A value of M either too big or too small leads to a bad
performance. Since the length of lines in an image has a wide
range, we need to choose a value of M to cover as many pixels
in the local region as possible while avoiding too much
abundant information. Judging from the results, we choose M
to be 20.

D. The choice of training set and the distribution of sampling
positions
The training set is important to the performance of our

descriptor. In our experiment, we use three different training
sets to sample locations for test pairs. The first one is the
image set used in Zhang and Koch's work[5]. The images has

been used for the evaluation of LBD descriptor. It contains
eight groups of images with different transformations
including illumination, rotation, compression, blurring,
occlusion, low-texture scene, viewpoint changes and scale
changes. These images are all planar scenes or taken with
fixed camera position. Thus, the image transformations can be
computed and the ground truth can be acquired by them. The
second training set is our manually-labeled image set. This set
contains over 100 images taken from different places with
combined transformations. Images are captured mostly in
indoor scenes and taken with no limitations. This set is quite
challenging for line matching. The last one is a combination of
automatically generated images by homography
transformations and manually-labeled ones. We select 100
reference images from the VOC 2008 set[14]. Each reference
image generates 20 query images. And the number of
manually-labeled images in this set is over 200.

We set M = 10, W = 30 and D = 256. Since these training
sets are quite different, the distribution of the final sampling
locations turns out to differ widely. Fig.7 shows the
distributions of these sets of test pairs acquired from training.

Fig. 7 Distribution of binary tests. (a) The training result of Zhang's dataset.
(b)The training result of our hand-labeled dataset. (c)The training result of the
combined dataset.

From the result we can see the obvious difference among
training results from different datasets. In the result from
Zhang's set, the two positions of a test pair are located on the
same side of the line. No pixels on different sides are found. In
the result from the hand-labeled set, most selected test pairs are
pixels on different sides. And in the result from the third set,
both pixel pairs on the same side and different sides are
selected. We do some matching tests with these results on the
same test set as shown in Fig. 8.

(a) (b)

(c)

2016 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 4-7 OCTOBER 2016, ALCALÁ DE
HENARES, MADRID, SPAIN

Fig. 8 The number of inliers using different distribution of sample locations.
There are in total 15637 lines computed from 138 manually-labeled images.

The result shows that the matching performance is the best
when the location of test pairs follows distribution III which
contains pixels both on the same side and on the different sides.
It also shows that the choice of training set should be carefully
collected, otherwise it may leads to a bad result like
Distribution I. For instance, images in Zhang's dataset are
groups with single transformations. The size of this dataset is
too small and the transformations of images in it are too simple
for the training. Images with combined transformations are
better than those with a single transformation, since the result
of our hand-labeled set outperforms that of Zhang's set.

E. Performance of BRLD
In this section, we evaluate the performance of the

proposed BRLD descriptor. First, we test the robustness of
BRLD against image rotations. The results are shown in Fig. 9.

Fig. 9 Matching performance of BRLD under different image rotations.

We use a rotation matrix to generate query images. As we

can see, BRLD is robust to image rotations. Only 14%
performance degrade has been observed under a 90 degree
rotation. The reason is largely due to the transformation
between the normalized coordinate system and the real image
before sampling the test pairs.

We also test the performance of BRLD under different
level of image noise. We add Gaussian noise with variance
ranges from 0.001 to 0.02. The PSNR ranges from 29.98 dB to
17.25 dB. The matching performance of BRLD is shown in
Fig. 10.

Fig. 10 Matching performance of BRLD under image noise.

The result shows that the performance of BRLD is still
promising under even large image noise. Since images in the
training set also contains noises and the binary test is done
from the integral images, the robustness of BRLD to noise is
not out of expectation.

In the following, we compare the proposed approach with
the state-of-the-art LBD descriptor that has been already
implemented in OpenCV. First, we compare the matching
correctness of BRLD and LBD on our test set which contains
216 manually-labeled images. These images are not included
in the training set. LBD descriptors are generated using
functions with default parameters in OpenCV. We set M = 20,
W = 40 and Dimension = 128 for BRLD. The training set
contains 2000 images automatically generated by
homographic warp and more than 200 manually-labeled
images. The result is shown in Fig. 11.

Fig.11 The average matching correctness of BRLD and LBD.

The result shows that the percentage of inliers computed by
BRLD is close to that of LBD. The average correctness over
216 testing images is 54.06% for BRLD and 56.42% for LBD.
Fig. 12 shows an illustration of the BRLD matching results.

2016 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 4-7 OCTOBER 2016, ALCALÁ DE
HENARES, MADRID, SPAIN

Fig.12 Matching results of BRLD on two pairs of labeled images. The
percentage of inliers in the first image pair is 36/53, and that in the second one
is 18/31.

The manually-labeled images in our test set are mostly low-
texture indoor scenes and lines in these images have high
similarity. However, BRLD descriptor still has a relatively
good performance without any other constraints.

Moreover, we compare the running-time efficiency of
BRLD and LBD. The tests are performed on an Intel i7 2.4
GHz processor. We compute BRLD and LBD on 20 612*816
images from our test set. The descriptor length is 128 for
BRLD and 32 for LBD. The results are shown in Table II.

TABLE II. THE AVERAGE TIME OF COMPOSITION AND MATCHING

Descriptor Descriptor composition
time per frame (ms)

Matching time per
frame (ms)

BRLD 4.89 1.74

LBD 60.98 10.56

10568 lines are detected by LSD in 20 images in total.
Both the time of descriptor extraction and matching are
recorded. We can see that BRLD is an order of magnitude
faster than LBD.

V. CONCLUSION
In this paper, we have proposed a novel binary line

descriptor - BRLD. We compared it with the-state-of-the-art
descriptor regarding both matching correctness and running
time efficiency. The results show that our method achieves a
matching performance close to the descriptors implemented in
OpenCV, while is one order of magnitude faster. The

computation cost of the proposed descriptor is low enough to
meet real-time requirements of mobile device applications.

Two key techniques has been applied in our approach.
Firstly, we establish a mapping between a normalized
coordinate system and the local patch of a line to normalize
different orientations and lengths, which makes the descriptor
robust to geometric transformations. Secondly, we use a
training approach to sampling positions automatically for
binary tests. After conducting an extensive study, we find the
parameters and way for collecting training datasets that leads to
a descriptor which is the most robust and discriminative.

In our experiments, we just use three kinds of database with
ground truth - images automatically generated by homography,
images taken with known homography and manually-labeled
images. Since the change of training set - both the size of it and
the types of images in it - have a great influence on descriptor
performance, we will collect more images with ground truth to
find a better training set to improve the performance in the
future work. Furthermore, the training method also has much
space to improve. With enough images with ground truth,
some state-of-art deep learning methods such as convolutional
neutral network[15] may be utilized. The matching method in
our experiment is just using descriptor distance. However,
other information could also be combined to improve the
matching performance, such as distance and orientation
closeness.

ACKNOWLEDGEMENT
This work is funded by Natural Science Foundation of

China under Grant No.61402283 and No.61573242, Important
National Science and Technology Specific Project of China
under Grant No.2016ZX03001022-006, the Shanghai Science
and Technology Committee under Grant No.16DZ1100402
and No.15511105100 and the National Science and
Technology Major Project under Grant No.GFZX0301010708.

REFERENCES
[1] Lowe D G. Distinctive image features from scale-invariant keypoints[J].

International journal of computer vision, 2004, 60(2): 91-110.
[2] Mikolajczyk K, Schmid C. A performance evaluation of local

descriptors[J]. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 2005, 27(10): 1615-1630.

[3] Mikolajczyk K, Tuytelaars T, Schmid C, et al. A comparison of affine
region detectors[J]. International journal of computer vision, 2005, 65(1-
2): 43-72.

[4] Zhou H, Zou D, Pei L, et al. StructSLAM: Visual SLAM with building
structure lines[J]. Vehicular Technology, IEEE Transactions on, 2015,
64(4): 1364-1375.

[5] Zhang L, Koch R. An efficient and robust line segment matching
approach based on LBD descriptor and pairwise geometric
consistency[J]. Journal of Visual Communication and Image
Representation, 2013, 24(7): 794-805.

[6] Wang Z, Wu F, Hu Z. MSLD: A robust descriptor for line matching[J].
Pattern Recognition, 2009, 42(5): 941-953.

[7] Calonder M, Lepetit V, Strecha C, et al. Brief: Binary robust
independent elementary features[J]. Computer Vision–ECCV 2010,
2010: 778-792.

[8] Rublee E, Rabaud V, Konolige K, et al. ORB: an efficient alternative to
SIFT or SURF[C]//Computer Vision (ICCV), 2011 IEEE International
Conference on. IEEE, 2011: 2564-2571.

2016 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 4-7 OCTOBER 2016, ALCALÁ DE
HENARES, MADRID, SPAIN
[9] Schmid C, Zisserman A. Automatic line matching across

views[C]//Computer Vision and Pattern Recognition, 1997.
Proceedings., 1997 IEEE Computer Society Conference on. IEEE, 1997:
666-671.

[10] Schmid C, Zisserman A. The geometry and matching of lines and curves
over multiple views[J]. International Journal of Computer Vision, 2000,
40(3): 199-233.

[11] Lourakis M I A, Halkidis S T, Orphanoudakis S C. Matching disparate
views of planar surfaces using projective invariants[J]. Image and Vision
Computing, 2000, 18(9): 673-683.

[12] Bay H, Ferrari V, Van Gool L. Wide-baseline stereo matching with line
segments[C]//Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on. IEEE, 2005, 1: 329-336.

[13] von Gioi R G, Jakubowicz J, Morel J M, et al. LSD: A fast line segment
detector with a false detection control[J]. IEEE Transactions on Pattern
Analysis & Machine Intelligence, 2008 (4): 722-732.

[14] Everingham M, Van Gool L, Williams C K I, et al. The pascal visual
object classes (voc) challenge[J]. International journal of computer
vision, 2010, 88(2): 303-338.

[15] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with
deep convolutional neural networks[C]//Advances in neural information
processing systems. 2012: 1097-1105.

